2. Piccinini G. The first computational theory of mind and brain: a close look at Mcculloch and Pitts's “logical calculus of ideas immanent in nervous activity. Synthese. 2004;141(2):175-215.
3. McCarthy J, Minsky ML, Rochester N, Shannon CE. A proposal for the Dartmouth summer research project on artificial intelligence, August 31, 1955. AI Mag. 2006;27(4):12
4. Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev. 1958;65(6):386-408.
5. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323(6088):533-536.
6. Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18(7):1527-1554.
7. Le Cun Y, Jackel LD, Boser B, Denker JS, Graf HP, Guyon I, et al. In: Sanchez-Sinencio E, Lau C, et al. editors. Artificial neural networks. IEEE Press; Piscataway (NJ): 1992. p. 463-468. Handwritten digit recognition: applications of neural net chips and automatic learning.
8. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012;25:1097-1105.
9. Le QV, Ranzato MA, Monga R, Devin M, Chen,K , Corrado GS, et al. Building high-level features using large scale unsupervised learning. arXiv, Cornell University; Ithaca (NY): 2012 Internet, Available from:
https://arxiv.org/abs/1112.6209. cited 2020 Jan 9.
10. Hinton G, Deng L, Yu D, Dahl GE, Mohamed AR, Jaitly,N , et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag. 2012;29(6):82-97.
12. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402-2410.
14. Committee on Diagnostic Error in Health Care. et al.Board on Health Care Services. et al.Balogh EP, Miller BT, Ball JR, Institute of Medicine , et alImproving diagnosis in health care. National Academies Press; Washington (DC): 2015.
18. Coiera E. The fate of medicine in the time of AI. Lancet. 2018;392(10162):2331-2332.
20. Gong B, Nugent JP, Guest W, Parker W, Chang PJ, Khosa F, et al. Influence of artificial intelligence on canadian medical students' preference for radiology specialty: a national survey study. Acad Radiol. 2019;26(4):566-577.
22. Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R. A deep learning mammography-based model for improved breast cancer risk prediction. Radiology. 2019;292(1):60-66.
25. Luo H, Xu G, Li C, He L, Luo L, Wang Z, et al. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study. Lancet Oncol.. 2019;20(12):1645-1654.
26. Mori Y, Kudo SE, Misawa M, Saito Y, Ikematsu H, Hotta K, et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy: a prospective study. Ann Intern Med. 2018;169(6):357-366.
27. Le Berre C, Sandborn WJ, Aridhi S, Devignes MD, Fournier L, Smail-Tabbone M, et al. Application of artificial intelligence to gastroenterology and hepatology. Gastroenterology. 2020;158(1):76-94.
28. Thomsen K, Iversen L, Titlestad TL, Winther O. Systematic review of machine learning for diagnosis and prognosis in dermatology. J Dermatolog Treat. 2019;1-15.
30. Cuocolo R, Perillo T, De Rosa E, Ugga L, Petretta M. Current applications of big data and machine learning in cardiology. J Geriatr Cardiol. 2019;16(8):601-607.
31. Ting DS, Peng L, Varadarajan AV, Keane PA, Burlina PM, Chiang MF, et al. Deep learning in ophthalmology: the technical and clinical considerations. Prog Retin Eye Res. 2019;72:100759
33. Liu X, Faes L, Kale AU, Wagner SK, Fu DJ, Bruynseels A, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health. 2019;1(6):e271-297.
36. Liu Y, Jain A, Eng C, Way DH, Lee K, Bui P, et al. A deep learning system for differential diagnosis of skin diseases. Nat Med. 2020;May 18 Epub.
37. Majkowska A, Mittal S, Steiner DF, Reicher JJ, McKinney SM, Duggan GE, et al. Chest radiograph interpretation with deep learning models: assessment with radiologist-adjudicated reference standards and population-adjusted evaluation. Radiology. 2020;294(2):421-431.
38. Hwang EJ, Nam JG, Lim WH, Park SJ, Jeong YS, Kang JH, et al. Deep learning for chest radiograph diagnosis in the emergency department. Radiology. 2019;293(3):573-580.
54. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347-1358.
55. Somashekhar SP, Sepulveda MJ, Puglielli S, Norden AD, Shortliffe EH, Rohit Kumar C, et al. Watson for oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board. Ann Oncol. 2018;29(2):418-423.
57. Pantuck AJ, Lee DK, Kee T, Wang P, Lakhotia S, Silverman MH, et al. Modulating BET bromodomain inhibitor ZEN‐3694 and enzalutamide combination dosing in a metastatic prostate cancer patient using CURATE. AI, an artificial intelligence platform. Adv Therap. 2018;1(6):1800104
58. Nikolov S, Blackwell S, Mendes R, De Fauw J, Meyer C, Hughes C, et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. Cornell University; Ithaca (NY): 2018 Internet, Available from:
https://arxiv.org/abs/1809.04430. cited 2020 Jan 10.
61. Wang Z, Fey AM. SATR-DL: improving surgical skill assessment and task recognition in robot-assisted surgery with deep neural networks. In: Conf Proc IEEE Eng Med Biol Soc; 2018;2018:pp 1793-1796.
63. Eggerth A, Hayn D, Schreier G. Medication management needs information and communications technology-based approaches, including telehealth and artificial intelligence. Br J Clin Pharmacol. 2019;Jul 4 Epub.
68. Van Steenkiste T, Ruyssinck J, De Baets L, Decruyenaere J, De Turck F, Ongenae F, et al. Accurate prediction of blood culture outcome in the intensive care unit using long short-term memory neural networks. Artif Intell Med. 2019;97:38-43.
75. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163(5):1079-1094.
80. Harrer S, Shah P, Antony B, Hu J. Artificial intelligence for clinical trial design. Trends Pharmacol Sci. 2019;40(8):577-591.
84. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial networks. arXiv, Cornell University; Ithaca (NY): 2014 Internet, Available from:
https://arxiv.org/pdf/1406.2661.pdf. cited 2020 Jan 10.
85. Borkowski AA, Wilson CP, Borkowski SA, Thomas LB, Deland LA, Grewe SJ, et al. Comparing artificial intelligence platforms for histopathologic cancer diagnosis. Fed Pract. 2019;36(10):456-463.
86. Faes L, Wagner SK, Fu DJ, Liu X, Korot E, Ledsam JR, et al. Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study. Lancet Digit Health. 2019;1(5):e232-242.
92. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366(6464):447-453.
93. Arrieta AB, Diaz-Rodriguez N, Ser JD, Bennetot A, Tabik S, Barbado A, et al. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. arXiv, Cornell University; Ithaca (NY): 2019 Internet, Available from:
https://arxiv.org/abs/1910.10045. cited 2020 Jan 10.
94. Murdoch WJ, Singh C, Kumbier K, Abbasi-Asl R, Yu B. Interpretable machine learning: definitions, methods, and applications. arXiv, Cornell University; Ithaca (NY): 2019 Internet, Available from:
https://arxiv.org/abs/1901.04592. cited 2020 Jan 10.
95. Matheny M, Israni ST, Auerbach A, Beam A, Bleicher P, Chapman W, et al. Artificial intelligence in health care: the hope, the hype, the promise, the peril. National Academy of Medicine; Washington (DC): 2019 Internet, Available from:
https://nam.edu/artificial-intelligence-special-publication/. cited 2020 Jan 10.
97. Wang F, Kaushal R, Khullar D. Should health care demand interpretable artificial intelligence or accept “black box” medicine? Ann Intern Med. 2020;172(1):59-60.
103. Schinkel M, Paranjape K, Nannan Panday RS, Skyttberg N, Nanayakkara PW. Clinical applications of artificial intelligence in sepsis: a narrative review. Comput Biol Med. 2019;115:103488
104. Liu Y, Chen PC, Krause J, Peng L. How to read articles that use machine learning: users’ guides to the medical literature. JAMA. 2019;322(18):1806-1816.
105. Doshi-Velez F, Perlis RH. Evaluating machine learning articles. JAMA. 2019;322(18):1777-1779.
106. Collins GS, Moons KG. Reporting of artificial intelligence prediction models. Lancet. 2019;393(10181):1577-1579.
107. Adamson AS, Welch HG. Machine learning and the cancer-diagnosis problem: no gold standard. N Engl J Med. 2019;381(24):2285-2287.
111. Lee TT, Kesselheim AS. U.S. Food and Drug Administration precertification pilot program for digital health software: weighing the benefits and risks. Ann Intern Med. 2018;168(10):730-732.
116. Price WN, Gerke S, Cohen IG. Potential liability for physicians using artificial intelligence. JAMA. 2019;Oct 4 Epub.
121. Wartman SA, Combs CD. Medical education must move from the information age to the age of artificial intelligence. Acad Med. 2018;93(8):1107-1109.
123. Shah NR, Lee TH. What AI means for doctors and doctoring. NEJM Catalyst; Waltham (MA): 2019 Internet, Available from: https://catalyst.nejm.org/doi/full/10.1056/CAT.19.0622. cited 2020 Jan 10.
124. Kwon YJ, Kim CH, Nam IH, Yoo SW, Jung JS. Current status of artificial intelligence in healthcare and awareness survey of medical students on artificial intelligence: results report for biomedical research course in College of Medicine, Pusan National University.. Pusan National University; Busan: 2018.
131. Cutrer WB, Miller B, Pusic MV, Mejicano G, Mangrulkar RS, Gruppen LD, et al. Fostering the development of master adaptive learners: a conceptual model to guide skill acquisition in medical education. Acad Med. 2017;92(1):70-75.
145. Kolachalama VB. Teaching: MS650: machine learning for biomedical applications. Boston University; Boston (MA): Internet, Available from:
http://sites.bu.edu/vkola/teaching/. cited 2020 Jan 10.
148. Stanford University. Precision practice with big data BIOMEDIN 205: precision medicine and big data. Stanford University; Stanford (CA): 2019 Internet, Available from:
https://canvas.stanford.edu/courses/106497. cited 2020 Jan 10.
150. Topol E. Deep medicine: how artificial intelligence can make healthcare human again. Basic Books; New York (NY): 2019.
151. Korean Institute of Medical Education and Evaluation. Post 2nd period medical education accreditation standards and regulations. Korean Institute of Medical Education and Evaluation; Seoul: 2010.
152. Korean Medical Association. Korean doctor’s role. Korean Medical Association; Seoul: 2014.
153. Korean Institute of Medical Education and Evaluation. Accreditation Standards of KIMEE 2019. Korean Institute of Medical Education and Evaluation; Seoul: 2019.
155. Dyrbye LN, Massie FS Jr, Eacker A, Harper W, Power D, Durning SJ, et al. Relationship between burnout and professional conduct and attitudes among US medical students. JAMA. 2010;304(11):1173-1180.